To accurately analyze structures, soil-structure interaction effects must be taken into account. One approach is to create a complete finite element model of the full system wherein the soil is represented as a semi-infinite domain. This direct method is frequently adopted in research studies, but it is typically avoided in engineering practice due to the labor-intensive model development, and the high computational cost. In practice, soil-structure interaction analysis is mostly carried out through a substructure approach where the superstructure is modeled through a detailed model and is placed on a soil-foundation substructure which is represented by a system called impedance function. Then, the entire system is analyzed under foundation input motions. While the method is theoretically designed for linear-elastic behavior, it can be partially applied to nonlinear systems too. Although impedance functions for various soil and foundation configurations can be obtained from analytical, numerical, or experimental analyses, their implementation in the time-domain is not trivial because they are frequency-dependent. A simple solution for this problem has been to convert them to some physical models with frequency-independent components, but there is no straightforward way to connect these components. More importantly, the coefficients of these components could be non-physical parameters that cannot be modeled in software like OpenSEES. To resolve these problems, various alternative approaches have been proposed in the literature. In this project, we review some of the existing solutions and verify them through numerical examples. After extensive review and evaluation, the Hybrid Time Frequency Domain method seems a more practical solution with fewer stability issues. This method is implemented in Opensees to be used by researchers and practitioners.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
Single-Shot Object Detection with Enriched Semantics
统计学习与视觉计算组
14+阅读 · 2018年8月29日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
Single-Shot Object Detection with Enriched Semantics
统计学习与视觉计算组
14+阅读 · 2018年8月29日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员