Intent-driven networks are an essential stepping stone in the evolution of network and service management towards a truly autonomous paradigm. User centric intents provide an abstracted means of impacting the design, provisioning, deployment and assurance of network infrastructure and services with the help of service level agreements and minimum network capability exposure. The concept of Intent Based Networking (IBN) poses several challenges in terms of the contextual definition of intents, role of different stakeholders, and a generalized architecture. In this review, we provide a comprehensive analysis of the state-of-the-art in IBN including the intent description models, intent lifecycle management, significance of IBN and a generalized architectural framework along with challenges and prospects for IBN in future cellular networks. An analytical study is performed on the data collected from relevant studies primarily focusing on the inter-working of IBN with softwarized networking based on NFV/SDN infrastructures. Critical functions required in the IBN management and service model design are explored with different abstract modeling techniques and a converged architectural framework is proposed. The key findings include: (1) benefits and role of IBN in autonomous networking, (2) improvements needed to integrate intents as fundamental policies for service modeling and network management, (3) need for appropriate representation models for intents in domain agnostic abstract manner, and (4) need to include learning as a fundamental function in autonomous networks. These observations provide the basis for in-depth investigation and standardization efforts for IBN as a fundamental network management paradigm in beyond 5G cellular networks.


翻译:暂无翻译

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Generative Adversarial Networks: A Survey and Taxonomy
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
相关基金
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员