Millimeter-wave (mmWave) communication is a vital component of future generations of mobile networks, offering not only high data rates but also precise beams, making it ideal for indoor navigation in complex environments. However, the challenges of multipath propagation and noisy signal measurements in indoor spaces complicate the use of mmWave signals for navigation tasks. Traditional physics-based methods, such as following the angle of arrival (AoA), often fall short in complex scenarios, highlighting the need for more sophisticated approaches. Digital twins, as virtual replicas of physical environments, offer a powerful tool for simulating and optimizing mmWave signal propagation in such settings. By creating detailed, physics-based models of real-world spaces, digital twins enable the training of machine learning algorithms in virtual environments, reducing the costs and limitations of physical testing. Despite their advantages, current machine learning models trained in digital twins often overfit specific virtual environments and require costly retraining when applied to new scenarios. In this paper, we propose a Physics-Informed Reinforcement Learning (PIRL) approach that leverages the physical insights provided by digital twins to shape the reinforcement learning (RL) reward function. By integrating physics-based metrics such as signal strength, AoA, and path reflections into the learning process, PIRL enables efficient learning and improved generalization to new environments without retraining. Our experiments demonstrate that the proposed PIRL, supported by digital twin simulations, outperforms traditional heuristics and standard RL models, achieving zero-shot generalization in unseen environments and offering a cost-effective, scalable solution for wireless indoor navigation.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员