We investigate in this work a recently emerged type of scam ERC-20 token called Trapdoor, which has cost investors billions of US dollars on Uniswap, the largest decentralised exchange on Ethereum, from 2020 to 2023. In essence, Trapdoor tokens allow users to buy but preventing them from selling by embedding logical bugs and/or owner-only features in their smart contracts. By manually inspecting a number of Trapdoor samples, we established the first systematic classification of Trapdoor tokens and a comprehensive list of techniques that scammers used to embed and conceal malicious codes, accompanied by a detailed analysis of representative scam contracts. In particular, we developed TrapdoorAnalyser, a fine-grained detection tool that generates and crosschecks the error-log of a buy-and-sell test and the list of embedded Trapdoor indicators from a contract-semantic check to reliably identify a Trapdoor token. TrapdoorAnalyser not only outperforms the state-of-the-art commercial tool GoPlus in accuracy, but also provides traces of malicious code with a full explanation, which most of the existing tools lack. Using TrapdoorAnalyser, we constructed the very first dataset of about 30,000 Trapdoor and non-Trapdoor tokens on UniswapV2, which allows us to train several machine learning algorithms that can detect with very high accuracy even Trapdoor tokens with no available Solidity source codes.


翻译:暂无翻译

1
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员