The {\em discrepancy} of a matrix $M \in \mathbb{R}^{d \times n}$ is given by $\mathrm{DISC}(M) := \min_{\boldsymbol{x} \in \{-1,1\}^n} \|M\boldsymbol{x}\|_\infty$. An outstanding conjecture, attributed to Koml\'os, stipulates that $\mathrm{DISC}(M) = O(1)$, whenever $M$ is a Koml\'os matrix, that is, whenever every column of $M$ lies within the unit sphere. Our main result asserts that $\mathrm{DISC}(M + R/\sqrt{d}) = O(d^{-1/2})$ holds asymptotically almost surely, whenever $M \in \mathbb{R}^{d \times n}$ is Koml\'os, $R \in \mathbb{R}^{d \times n}$ is a Rademacher random matrix, $d = \omega(1)$, and $n = \omega(d \log d)$. The factor $d^{-1/2}$ normalising $R$ is essentially best possible and the dependency between $n$ and $d$ is asymptotically best possible. Our main source of inspiration is a result by Bansal, Jiang, Meka, Singla, and Sinha (ICALP 2022). They obtained an assertion similar to the one above in the case that the smoothing matrix is Gaussian. They asked whether their result can be attained with the optimal dependency $n = \omega(d \log d)$ in the case of Bernoulli random noise or any other types of discretely distributed noise; the latter types being more conducive for Smoothed Analysis in other discrepancy settings such as the Beck-Fiala problem. For Bernoulli noise, their method works if $n = \omega(d^2)$. In the case of Rademacher noise, we answer the question posed by Bansal, Jiang, Meka, Singla, and Sinha. Our proof builds upon their approach in a strong way and provides a discrete version of the latter. Breaking the $n = \omega(d^2)$ barrier and reaching the optimal dependency $n = \omega(d \log d)$ for Rademacher noise requires additional ideas expressed through a rather meticulous counting argument, incurred by the need to maintain a high level of precision all throughout the discretisation process.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Generalized Out-of-Distribution Detection: A Survey
Arxiv
15+阅读 · 2021年10月21日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员