The USA Food and Drug Administration has accorded increasing importance to patient-reported problems in clinical and research settings. In this paper, we explore one of the largest online datasets comprising 170,141 open-ended self-reported responses (called "verbatims") from patients with Parkinson's (PwPs) to questions about what bothers them about their Parkinson's Disease and how it affects their daily functioning, also known as the Parkinson's Disease Patient Report of Problems. Classifying such verbatims into multiple clinically relevant symptom categories is an important problem and requires multiple steps - expert curation, a multi-label text classification (MLTC) approach and large amounts of labelled training data. Further, human annotation of such large datasets is tedious and expensive. We present a novel solution to this problem where we build a baseline dataset using 2,341 (of the 170,141) verbatims annotated by nine curators including clinical experts and PwPs. We develop a rules based linguistic-dictionary using NLP techniques and graph database-based expert phrase-query system to scale the annotation to the remaining cohort generating the machine annotated dataset, and finally build a Keras-Tensorflow based MLTC model for both datasets. The machine annotated model significantly outperforms the baseline model with a F1-score of 95% across 65 symptom categories on a held-out test set.


翻译:暂无翻译

0
下载
关闭预览

相关内容

文本分类(Text Classification)任务是根据给定文档的内容或主题,自动分配预先定义的类别标签。
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
167+阅读 · 2020年3月18日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
Arxiv
31+阅读 · 2018年11月13日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
Top
微信扫码咨询专知VIP会员