We propose, analyze, and test new iterative solvers for large-scale systems of linear algebraic equations arising from the finite element discretization of reduced optimality systems defining the finite element approximations to the solution of elliptic tracking-type distributed optimal control problems with both the standard $L_2$ and the more general energy regularizations. If we aim at an approximation of the given desired state $y_d$ by the computed finite element state $y_h$ that asymptotically differs from $y_d$ in the order of the best $L_2$ approximation under acceptable costs for the control, then the optimal choice of the regularization parameter $\varrho$ is linked to the mesh-size $h$ by the relations $\varrho=h^4$ and $\varrho=h^2$ for the $L_2$ and the energy regularization, respectively. For this setting, we can construct efficient parallel iterative solvers for the reduced finite element optimality systems. These results can be generalized to variable regularization parameters adapted to the local behavior of the mesh-size that can heavily change in case of adaptive mesh refinement. Similar results can be obtained for the space-time finite element discretization of the corresponding parabolic and hyperbolic optimal control problems.


翻译:暂无翻译

0
下载
关闭预览

相关内容

【ACL2020】多模态信息抽取,365页ppt
专知会员服务
151+阅读 · 2020年7月6日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
VIP会员
相关资讯
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员