The intricate interplay of source dynamics, unreliable channels, and staleness of information has long been recognized as a significant impediment for the receiver to achieve accurate, timely, and most importantly, goal-oriented decision making. Thus, a plethora of promising metrics, such as Age of Information, Value of Information, and Mean Square Error, have emerged to quantify these underlying adverse factors. Following this avenue, optimizing these metrics has indirectly improved the utility of goal-oriented decision making. Nevertheless, no metric has hitherto been expressly devised to evaluate the utility of a goal-oriented decision-making process. To this end, this paper investigates a novel performance metric, the Goal-oriented Tensor (GoT), to directly quantify the impact of semantic mismatches on the goal-oriented decision making. Based on the GoT, we consider a sampler-decision maker pair that work collaboratively and distributively to achieve a shared goal of communications. We formulate an infinite-horizon Decentralized Partially Observable Markov Decision Process (Dec-POMDP) to conjointly deduce the optimal deterministic sampling policy and decision-making policy. The simulation results reveal that the sampler-decision maker co-design surpasses the current literature on AoI and its variants in terms of both goal achievement utility and sparse sampling rate, signifying a notable accomplishment for a sparse sampler and goal-oriented decision maker co-design.


翻译:暂无翻译

0
下载
关闭预览

相关内容

强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
Arxiv
29+阅读 · 2023年2月10日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
相关基金
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员