In this work, we develop a novel neural network (NN) approach to solve the discrete inverse conductivity problem of recovering the conductivity profile on network edges from the discrete Dirichlet-to-Neumann map on a square lattice. The novelty of the approach lies in the fact that the sought-after conductivity is not provided directly as the output of the NN but is instead encoded in the weights of the post-trainig NN in the second layer. Hence the weights of the trained NN acquire a clear physical meaning, which contrasts with most existing neural network approaches, where the weights are typically not interpretable. This work represents a step toward designing NNs with interpretable post-training weights. Numerically, we observe that the method outperforms the conventional Curtis-Morrow algorithm for both noisy full and partial data.
翻译:暂无翻译