Approximation and learning of classifiers of large data sets by neural networks in terms of high-dimensional geometry and statistical learning theory are investigated. The influence of the VC dimension of sets of input-output functions of networks on approximation capabilities is compared with its influence on consistency in learning from samples of data. It is shown that, whereas finite VC dimension is desirable for uniform convergence of empirical errors, it may not be desirable for approximation of functions drawn from a probability distribution modeling the likelihood that they occur in a given type of application. Based on the concentration-of-measure properties of high dimensional geometry, it is proven that both errors in approximation and empirical errors behave almost deterministically for networks implementing sets of input-output functions with finite VC dimensions in processing large data sets. Practical limitations of the universal approximation property, the trade-offs between the accuracy of approximation and consistency in learning from data, and the influence of depth of networks with ReLU units on their accuracy and consistency are discussed.


翻译:本文基于高维几何与统计学习理论,研究了神经网络对大规模数据集分类器的逼近与学习问题。通过比较网络输入-输出函数集合的VC维对其逼近能力的影响与对数据样本学习一致性的影响,研究发现:尽管有限VC维有利于经验误差的一致收敛,但对于从模拟特定应用类型中函数出现概率的分布中抽取的函数逼近而言,有限VC维可能并非理想特性。基于高维几何的测度集中性质,本文证明在处理大规模数据集时,对于实现有限VC维输入-输出函数集合的网络,其逼近误差与经验误差均表现出近乎确定性的行为。文中进一步探讨了通用逼近性质的实际局限性、逼近精度与数据学习一致性之间的权衡关系,以及带ReLU单元的网络深度对其精度与一致性的影响。

0
下载
关闭预览

相关内容

VC维(外文名Vapnik-Chervonenkis Dimension)的概念是为了研究学习过程一致收敛的速度和推广性,由统计学理论定义的有关函数集学习性能的一个重要指标。 VC维反映了函数集的学习能力,VC维越大则学习机器越复杂(容量越大),遗憾的是,目前尚没有通用的关于任意函数集VC维计算的理论,只对一些特殊的函数集知道其VC维。例如在N维空间中线性分类器和线性实函数的VC维是N+1。
【ICML2023】SEGA:结构熵引导的图对比学习锚视图
专知会员服务
22+阅读 · 2023年5月10日
【NeurIPS2022】VICRegL:局部视觉特征的自监督学习
专知会员服务
32+阅读 · 2022年10月6日
专知会员服务
19+阅读 · 2021年8月15日
论文浅尝 | Interaction Embeddings for Prediction and Explanation
开放知识图谱
11+阅读 · 2019年2月1日
误差反向传播——CNN
统计学习与视觉计算组
30+阅读 · 2018年7月12日
论文浅尝 | Know-Evolve: Deep Temporal Reasoning for Dynamic KG
开放知识图谱
36+阅读 · 2018年3月30日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
17+阅读 · 2008年12月31日
VIP会员
相关资讯
论文浅尝 | Interaction Embeddings for Prediction and Explanation
开放知识图谱
11+阅读 · 2019年2月1日
误差反向传播——CNN
统计学习与视觉计算组
30+阅读 · 2018年7月12日
论文浅尝 | Know-Evolve: Deep Temporal Reasoning for Dynamic KG
开放知识图谱
36+阅读 · 2018年3月30日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
17+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员