We consider multi-population Bayesian games with a large number of players. Each player aims at minimizing a cost function that depends on this player's own action, the distribution of players' actions in all populations, and an unknown state parameter. We study the nonatomic limit versions of these games and introduce the concept of Bayes correlated Wardrop equilibrium, which extends the concept of Bayes correlated equilibrium to nonatomic games. We prove that Bayes correlated Wardrop equilibria are limits of action flows induced by Bayes correlated equilibria of the game with a large finite set of small players. For nonatomic games with complete information admitting a convex potential, we prove that the set of correlated and of coarse correlated Wardrop equilibria coincide with the set of probability distributions over Wardrop equilibria, and that all equilibrium outcomes have the same costs. We get the following consequences. First, all flow distributions of (coarse) correlated equilibria in convex potential games with finitely many players converge to Wardrop equilibria when the weight of each player tends to zero. Second, for any sequence of flows satisfying a no-regret property, its empirical distribution converges to the set of distributions over Wardrop equilibria and the average cost converges to the unique Wardrop cost.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2023年10月19日
Arxiv
0+阅读 · 2023年10月18日
Arxiv
0+阅读 · 2023年10月18日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关论文
Arxiv
0+阅读 · 2023年10月19日
Arxiv
0+阅读 · 2023年10月18日
Arxiv
0+阅读 · 2023年10月18日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员