In this work, we consider the matrix completion problem, where the objective is to reconstruct a low-rank matrix from a few observed entries. A commonly employed approach involves nuclear norm minimization. For this method to succeed, the number of observed entries needs to scale at least proportional to both the rank of the ground-truth matrix and the coherence parameter. While the only prior information is oftentimes the low-rank nature of the ground-truth matrix, in various real-world scenarios, additional knowledge about the ground-truth low-rank matrix is available. For instance, in collaborative filtering, Netflix problem, and dynamic channel estimation in wireless communications, we have partial or full knowledge about the signal subspace in advance. Specifically, we are aware of some subspaces that form multiple angles with the column and row spaces of the ground-truth matrix. Leveraging this valuable information has the potential to significantly reduce the required number of observations. To this end, we introduce a multi-weight nuclear norm optimization problem that concurrently promotes the low-rank property as well the information about the available subspaces. The proposed weights are tailored to penalize each angle corresponding to each basis of the prior subspace independently. We further propose an optimal weight selection strategy by minimizing the coherence parameter of the ground-truth matrix, which is equivalent to minimizing the required number of observations. Simulation results validate the advantages of incorporating multiple weights in the completion procedure. Specifically, our proposed multi-weight optimization problem demonstrates a substantial reduction in the required number of observations compared to the state-of-the-art methods.


翻译:暂无翻译

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2024年6月18日
Arxiv
0+阅读 · 2024年6月18日
Arxiv
0+阅读 · 2024年6月15日
Arxiv
29+阅读 · 2022年3月28日
Memory-Gated Recurrent Networks
Arxiv
12+阅读 · 2020年12月24日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关论文
Arxiv
0+阅读 · 2024年6月18日
Arxiv
0+阅读 · 2024年6月18日
Arxiv
0+阅读 · 2024年6月15日
Arxiv
29+阅读 · 2022年3月28日
Memory-Gated Recurrent Networks
Arxiv
12+阅读 · 2020年12月24日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员