Deciding whether a given function is quasiconvex is generally a difficult task. Here, we discuss a number of numerical approaches that can be used in the search for a counterexample to the quasiconvexity of a given function $W$. We will demonstrate these methods using the planar isotropic rank-one convex function \[ W_{\rm magic}^+(F)=\frac{\lambda_{\rm max}}{\lambda_{\rm min}}-\log\frac{\lambda_{\rm max}}{\lambda_{\rm min}}+\log\det F=\frac{\lambda_{\rm max}}{\lambda_{\rm min}}+2\log\lambda_{\rm min}\,, \] where $\lambda_{\rm max}\geq\lambda_{\rm min}$ are the singular values of $F$, as our main example. In a previous contribution, we have shown that quasiconvexity of this function would imply quasiconvexity for all rank-one convex isotropic planar energies $W:\operatorname{GL}^+(2)\rightarrow\mathbb{R}$ with an additive volumetric-isochoric split of the form \[ W(F)=W_{\rm iso}(F)+W_{\rm vol}(\det F)=\widetilde W_{\rm iso}\bigg(\frac{F}{\sqrt{\det F}}\bigg)+W_{\rm vol}(\det F) \] with a concave volumetric part. This example is therefore of particular interest with regard to Morrey's open question whether or not rank-one convexity implies quasiconvexity in the planar case.


翻译:确定给定函数是否为 准 convex 通常是一项困难的任务 。 在这里, 我们讨论一些数字方法, 可以用来查找给定函数的准 convexpolation $W$。 我们将用 Planar 等离子正弦正弦正弦函数来演示这些方法 \ [W\rm magic\ (F)\\frac\ llambda ⁇ rm min\\\\ log\ lambl\\ rm maxl\ lambl\ macl\ macl\\ lambda\rm\ min macrt\\\ lafrel\\\ labrd\ mar\\\ lambr\ rda} maxl= florma_\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ ad p p preal pal pal palPreal le pal pal le pal modeal modeal modeal modeal modeal modeal le le modeal modeal modeal le le le le le le modeal le le le le le le ex ex ex ex fl_ fl_ fl_ fl_ fl_ fl_ fl_ fl_ fl_ fl_ fl_ fl_ fl_ fl_ fl_ fl_ fl_ fl_ fl_ fl_ fl_ fl_ fl_ fl_ fl_ fl_ fl_ fl_ fli_ f_ fli_ fl_ fl_ fl_ fl_ fl_ fl_ fli_ fli_ fli_ f

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
82+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
1+阅读 · 2022年4月19日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关基金
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员