We develop a scalable class of models for latent variable estimation using composite Gaussian processes, with a focus on derivative Gaussian processes. We jointly model multiple data sources as outputs to improve the accuracy of latent variable inference under a single probabilistic framework. Similarly specified exact Gaussian processes scale poorly with large datasets. To overcome this, we extend the recently developed Hilbert space approximation methods for Gaussian processes to obtain a reduced-rank representation of the composite covariance function through its spectral decomposition. Specifically, we derive and analyze the spectral decomposition of derivative covariance functions and further study their properties theoretically. Using these spectral decompositions, our methods easily scale up to data scenarios involving thousands of samples. We validate our methods in terms of latent variable estimation accuracy, uncertainty calibration, and inference speed across diverse simulation scenarios. Finally, using a real world case study from single-cell biology, we demonstrate the potential of our models in estimating latent cellular ordering given gene expression levels, thus enhancing our understanding of the underlying biological process.
翻译:暂无翻译