We introduce a density-power weighted variant for the Stein operator, called the $\gamma$-Stein operator. This is a novel class of operators derived from the $\gamma$-divergence, designed to build robust inference methods for unnormalized probability models. The operator's construction (weighting by the model density raised to a positive power $\gamma$ inherently down-weights the influence of outliers, providing a principled mechanism for robustness. Applying this operator yields a robust generalization of score matching that retains the crucial property of being independent of the model's normalizing constant. We extend this framework to develop two key applications: the $\gamma$-kernelized Stein discrepancy for robust goodness-of-fit testing, and $\gamma$-Stein variational gradient descent for robust Bayesian posterior approximation. Empirical results on contaminated Gaussian and quartic potential models show our methods significantly outperform standard baselines in both robustness and statistical efficiency.


翻译:我们引入了一种密度加权Stein算子的变体,称为$\\gamma$-Stein算子。这是一类从$\\gamma$-散度推导出的新型算子,旨在为未归一化概率模型构建鲁棒推断方法。该算子的构造(通过模型密度的正幂次$\\gamma$进行加权)本质上降低了异常值的影响,为鲁棒性提供了理论机制。应用该算子可得到分数匹配的鲁棒泛化形式,并保留了与模型归一化常数无关的关键性质。我们将此框架扩展至两个关键应用:用于鲁棒拟合优度检验的$\\gamma$-核化Stein差异,以及用于鲁棒贝叶斯后验近似的$\\gamma$-Stein变分梯度下降。在污染高斯模型和四次势能模型上的实证结果表明,我们的方法在鲁棒性和统计效率上均显著优于标准基线。

0
下载
关闭预览

相关内容

【ACL2020】多模态信息抽取,365页ppt
专知会员服务
151+阅读 · 2020年7月6日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
RL解决'BipedalWalkerHardcore-v2' (SOTA)
CreateAMind
31+阅读 · 2019年7月17日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
RL解决'BipedalWalkerHardcore-v2' (SOTA)
CreateAMind
31+阅读 · 2019年7月17日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员