Background. The excess mortality rate in Aotearoa New Zealand during the Covid-19 pandemic is frequently estimated to be among the lowest in the world. However, to facilitate international comparisons, many of the methods that have been used to estimate excess mortality do not use age-stratified data on deaths and population size, which may compromise their accuracy. Methods. We used a quasi-Poisson regression model for monthly all-cause deaths among New Zealand residents, controlling for age, sex and seasonality. We fitted the model to deaths data for 2014-19. We estimated monthly excess mortality for 2020-23 as the difference between actual deaths and projected deaths according to the model. We conducted sensitivity analysis on the length of the pre-pandemic period used to fit the model. We benchmarked our results against a simple linear regression on the standardised annual mortality rate. Results. We estimated cumulative excess mortality in New Zealand in 2020-23 was 1040 (95% confidence interval [-1134, 2927]), equivalent to 0.7% [-0.8%, 2.0%] of expected mortality. Excess mortality was negative in 2020-21. The magnitude, timing and age-distribution of the positive excess mortality in 2022-23 were closely matched with confirmed Covid-19 deaths. Conclusions. Negative excess mortality in 2020-21 reflects very low levels of Covid-19 and major reductions in seasonal respiratory diseases during this period. In 2022-23, Covid-19 deaths were the main contributor to excess mortality and there was little or no net non-Covid-19 excess. Overall, New Zealand experienced one of the lowest rates of pandemic excess mortality in the world.


翻译:暂无翻译

1
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员