In recent years, quantum Ising machines have drawn a lot of attention, but due to physical implementation constraints, it has been difficult to achieve dense coupling, such as full coupling with sufficient spins to handle practical large-scale applications. Consequently, classically computable equations have been derived from quantum master equations for these quantum Ising machines. Parallel implementations of these algorithms using FPGAs have been used to rapidly find solutions to these problems on a scale that is difficult to achieve in physical systems. We have developed an FPGA implemented cyber coherent Ising machine (cyber CIM) that is much more versatile than previous implementations using FPGAs. Our architecture is versatile since it can be applied to the open-loop CIM, which was proposed when CIM research began, to the closed-loop CIM, which has been used recently, as well as to Jacobi successive over-relaxation method. By modifying the sequence control code for the calculation control module, other algorithms such as Simulated Bifurcation (SB) can also be implemented. Earlier research on large-scale FPGA implementations of SB and CIM used binary or ternary discrete values for connections, whereas the cyber CIM used FP32 values. Also, the cyber CIM utilized Zeeman terms that were represented as FP32, which were not present in other large-scale FPGA systems. Our implementation with continuous interaction realizes N=4096 on a single FPGA, comparable to the single-FPGA implementation of SB with binary interactions, with N=4096. The cyber CIM enables applications such as CDMA multi-user detector and L0 compressed sensing which were not possible with earlier FPGA systems, while enabling superior calculation speeds, more than ten times faster than a GPU implementation. The calculation speed can be further improved by increasing parallelism, such as through clustering.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FPGA:ACM/SIGDA International Symposium on Field-Programmable Gate Arrays。 Explanation:ACM/SIGDA现场可编程门阵列国际研讨会。 Publisher:ACM。 SIT: http://dblp.uni-trier.de/db/conf/fpga/
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Knowledge Embedding Based Graph Convolutional Network
Arxiv
24+阅读 · 2021年4月23日
Arxiv
10+阅读 · 2020年6月12日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员