Test collections are information retrieval tools that allow researchers to quickly and easily evaluate ranking algorithms. While test collections have become an integral part of IR research, the process of data creation involves significant effort in manual annotations, which often makes it very expensive and time-consuming. Thus, test collections could become too small when the budget is limited, which may lead to unstable evaluations. As a cheaper alternative, recent studies have proposed the use of large language models (LLMs) to completely replace human assessors. However, while LLMs may seem to somewhat correlate with human judgments, their predictions are not perfect and often show bias. Thus a complete replacement with LLMs is argued to be too risky and not fully reliable. Thus, in this paper, we propose LLM-Assisted Relevance Assessments (LARA), an effective method to balance manual annotations with LLM annotations, which helps to build a rich and reliable test collection even under a low budget. We use the LLM's predicted relevance probabilities to select the most profitable documents to manually annotate under a budget constraint. With theoretical reasoning, LARA effectively guides the human annotation process by actively learning to calibrate the LLM's predicted relevance probabilities. Then, using the calibration model learned from the limited manual annotations, LARA debiases the LLM predictions to annotate the remaining non-assessed data. Empirical evaluations on TREC-7 Ad Hoc, TREC-8 Ad Hoc, TREC Robust 2004, and TREC-COVID datasets show that LARA outperforms alternative solutions under almost any budget constraint.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Deep Face Recognition: A Survey
Arxiv
18+阅读 · 2019年2月12日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关论文
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员