Designing algorithms for space bounded models with restoration requirements on the space used by the algorithm is an important challenge posed about the catalytic computation model introduced by Buhrman et al. (2014). Motivated by the scenarios where we do not need to restore unless is useful, we define $ACL(A)$ to be the class of languages that can be accepted by almost-catalytic Turing machines with respect to $A$ (which we call the catalytic set), that uses at most $c\log n$ work space and $n^c$ catalytic space. We show that if there are almost-catalytic algorithms for a problem with catalytic set as $A \subseteq \Sigma^*$ and its complement respectively, then the problem can be solved by a ZPP algorithm. Using this, we derive that to design catalytic algorithms, it suffices to design almost-catalytic algorithms where the catalytic set is the set of strings of odd weight ($PARITY$). Towards this, we consider two complexity measures of the set $A$ which are maximized for $PARITY$ - random projection complexity (${\cal R}(A)$) and the subcube partition complexity (${\cal P}(A)$). By making use of error-correcting codes, we show that for all $k \ge 1$, there is a language $A_k \subseteq \Sigma^*$ such that $DSPACE(n^k) \subseteq ACL(A_k)$ where for every $m \ge 1$, $\mathcal{R}(A_k \cap \{0,1\}^m) \ge \frac{m}{4}$ and $\mathcal{P}(A_k \cap \{0,1\}^m)=2^{m/4}$. This contrasts the catalytic machine model where it is unclear if it can accept all languages in $DSPACE(\log^{1+\epsilon} n)$ for any $\epsilon > 0$. Improving the partition complexity of the catalytic set $A$ further, we show that for all $k \ge 1$, there is a $A_k \subseteq \{0,1\}^*$ such that $\mathsf{DSPACE}(\log^k n) \subseteq ACL(A_k)$ where for every $m \ge 1$, $\mathcal{R}(A_k \cap \{0,1\}^m) \ge \frac{m}{4}$ and $\mathcal{P}(A_k \cap \{0,1\}^m)=2^{m/4+\Omega(\log m)}$.


翻译:暂无翻译

0
下载
关闭预览

相关内容

【ACL2020】多模态信息抽取,365页ppt
专知会员服务
151+阅读 · 2020年7月6日
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
31+阅读 · 2021年6月30日
Adaptive Synthetic Characters for Military Training
Arxiv
50+阅读 · 2021年1月6日
Meta-Learning to Cluster
Arxiv
18+阅读 · 2019年10月30日
Domain Representation for Knowledge Graph Embedding
Arxiv
14+阅读 · 2019年9月11日
VIP会员
相关VIP内容
【ACL2020】多模态信息抽取,365页ppt
专知会员服务
151+阅读 · 2020年7月6日
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关论文
Arxiv
31+阅读 · 2021年6月30日
Adaptive Synthetic Characters for Military Training
Arxiv
50+阅读 · 2021年1月6日
Meta-Learning to Cluster
Arxiv
18+阅读 · 2019年10月30日
Domain Representation for Knowledge Graph Embedding
Arxiv
14+阅读 · 2019年9月11日
相关基金
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员