A central goal in AI is to represent scenes as compositions of discrete objects, enabling fine-grained, controllable image and video generation. Yet leading diffusion models treat images holistically and rely on text conditioning, creating a mismatch for object-level editing. This thesis introduces a framework that adapts powerful pretrained diffusion models for object-centric synthesis while retaining their generative capacity. We identify a core challenge: balancing global scene coherence with disentangled object control. Our method integrates lightweight, slot-based conditioning into pretrained models, preserving their visual priors while providing object-specific manipulation. For images, SlotAdapt augments diffusion models with a register token for background/style and slot-conditioned modules for objects, reducing text-conditioning bias and achieving state-of-the-art results in object discovery, segmentation, compositional editing, and controllable image generation. We further extend the framework to video. Using Invariant Slot Attention (ISA) to separate object identity from pose and a Transformer-based temporal aggregator, our approach maintains consistent object representations and dynamics across frames. This yields new benchmarks in unsupervised video object segmentation and reconstruction, and supports advanced editing tasks such as object removal, replacement, and insertion without explicit supervision. Overall, this work establishes a general and scalable approach to object-centric generative modeling for images and videos. By bridging human object-based perception and machine learning, it expands the design space for interactive, structured, and user-driven generative tools in creative, scientific, and practical domains.
翻译:暂无翻译