Quantum Machine Learning (QML) has emerged as a promising field of research, aiming to leverage the capabilities of quantum computing to enhance existing machine learning methodologies. Recent studies have revealed that, like their classical counterparts, QML models based on Parametrized Quantum Circuits (PQCs) are also vulnerable to adversarial attacks. Moreover, the existence of Universal Adversarial Perturbations (UAPs) in the quantum domain has been demonstrated theoretically in the context of quantum classifiers. In this work, we introduce QuGAP: a novel framework for generating UAPs for quantum classifiers. We conceptualize the notion of additive UAPs for PQC-based classifiers and theoretically demonstrate their existence. We then utilize generative models (QuGAP-A) to craft additive UAPs and experimentally show that quantum classifiers are susceptible to such attacks. Moreover, we formulate a new method for generating unitary UAPs (QuGAP-U) using quantum generative models and a novel loss function based on fidelity constraints. We evaluate the performance of the proposed framework and show that our method achieves state-of-the-art misclassification rates, while maintaining high fidelity between legitimate and adversarial samples.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2024年3月25日
Arxiv
12+阅读 · 2023年5月22日
Arxiv
31+阅读 · 2021年6月30日
Arxiv
38+阅读 · 2020年12月2日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关论文
Arxiv
0+阅读 · 2024年3月25日
Arxiv
12+阅读 · 2023年5月22日
Arxiv
31+阅读 · 2021年6月30日
Arxiv
38+阅读 · 2020年12月2日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员