Coalgebra, as the abstract study of state-based systems, comes naturally equipped with a notion of behavioural equivalence that identifies states exhibiting the same behaviour. In many cases, however, this equivalence is finer than the intended semantics. Particularly in automata theory, behavioural equivalence of nondeterministic automata is essentially bisimilarity, and thus does not coincide with language equivalence. Language equivalence can be captured as behavioural equivalence on the determinization, which is obtained via the standard powerset construction. This construction can be lifted to coalgebraic generality, assuming a so-called Eilenberg-Moore distributive law between the functor determining the type of accepted structure (e.g.\ word languages) and a monad capturing the branching type (e.g. nondeterministic, weighted, probabilistic). Eilenberg-Moore-style coalgebraic semantics in this sense has been shown to be essentially subsumed by the more general framework of graded semantics, which is centrally based on graded monads. Graded semantics comes with a range of generic results, in particular regarding invariance and, under suitable conditions, expressiveness of dedicated modal logics for a given semantics; notably, these logics are evaluated on the original state space. We show that the instantiation of such graded logics to the case of Eilenberg-Moore-style semantics works extremely smoothly, and yields expressive modal logics in essentially all cases of interest. We additionally parametrize the framework over a quantale of truth values, thus in particular covering both the two-valued notions of equivalence and quantitative ones, i.e. behavioural distances.


翻译:暂无翻译

0
下载
关闭预览

相关内容

CASES:International Conference on Compilers, Architectures, and Synthesis for Embedded Systems。 Explanation:嵌入式系统编译器、体系结构和综合国际会议。 Publisher:ACM。 SIT: http://dblp.uni-trier.de/db/conf/cases/index.html
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员