The XGBoost method has many advantages and is especially suitable for statistical analysis of big data, but its loss function is limited to convex functions. In many specific applications, a nonconvex loss function would be preferable. In this paper, I propose a generalized XGBoost method, which requires weaker loss function constraint and involves more general loss functions, including convex loss functions and some non-convex loss functions. Furthermore, this generalized XGBoost method is extended to multivariate loss function to form a more generalized XGBoost method. This method is a multiobjective parameter regularized tree boosting method, which can model multiple parameters in most of the frequently-used parametric probability distributions to be fitted by predictor variables. Meanwhile, the related algorithms and some examples in non-life insurance pricing are given.


翻译:XGBoost 方法有许多优点,特别适合对海量数据进行统计分析,但其损失功能仅限于 convex 函数。在许多具体应用中,非 convex 损失功能比较可取。在本文中,我提议采用通用的 XGBoost 方法,这种方法要求损失功能受较弱的限制,并涉及更一般的损失功能,包括Convex 损失功能和一些非 convex 损失功能。此外,这种通用的 XGBoost 方法扩大到多变量损失功能,形成一种更为普遍的 XGBoost 方法。这种方法是一种多目标参数的正规化树助推法,可以模拟多数经常使用的参数参数分布,以预测变量为基准。同时,还给出了相关的算法和非寿命保险定价中的一些实例。

0
下载
关闭预览

相关内容

损失函数,在AI中亦称呼距离函数,度量函数。此处的距离代表的是抽象性的,代表真实数据与预测数据之间的误差。损失函数(loss function)是用来估量你模型的预测值f(x)与真实值Y的不一致程度,它是一个非负实值函数,通常使用L(Y, f(x))来表示,损失函数越小,模型的鲁棒性就越好。损失函数是经验风险函数的核心部分,也是结构风险函数重要组成部分。
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
国家自然科学基金
5+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年4月16日
Meta-Learning to Cluster
Arxiv
18+阅读 · 2019年10月30日
VIP会员
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
相关基金
国家自然科学基金
5+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员