We propose a new paradigm for Belief Change in which the new information is represented as sets of models, while the agent's body of knowledge is represented as a finite set of formulae, that is, a finite base. The focus on finiteness is crucial when we consider limited agents and reasoning algorithms. Moreover, having the input as arbitrary set of models is more general than the usual treatment of formulae as input. In this setting, we define new Belief Change operations akin to traditional expansion and contraction, and we identify the rationality postulates that emerge due to the finite representability requirement. We also analyse different logics concerning compatibility with our framework.


翻译:我们提出了一个新的信仰改变范式,其中新信息作为一套模型,而代理人的知识体则作为一套有限的公式,即一个有限的基数。当我们考虑有限的代理人和推理算法时,以限制为重点至关重要。此外,将投入作为任意的一套模型比通常将公式当作投入的做法更为笼统。在这个环境中,我们定义了类似于传统扩张和收缩的新信仰改变操作,我们确定了由于有限的代表性要求而产生的合理性假设。我们还分析了与我们框架兼容性的不同逻辑。</s>

0
下载
关闭预览

相关内容

强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2023年4月26日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员