To successfully launch backdoor attacks, injected data needs to be correctly labeled; otherwise, they can be easily detected by even basic data filters. Hence, the concept of clean-label attacks was introduced, which is more dangerous as it doesn't require changing the labels of injected data. To the best of our knowledge, the existing clean-label backdoor attacks largely relies on an understanding of the entire training set or a portion of it. However, in practice, it is very difficult for attackers to have it because of training datasets often collected from multiple independent sources. Unlike all current clean-label attacks, we propose a novel clean label method called 'Poison Dart Frog'. Poison Dart Frog does not require access to any training data; it only necessitates knowledge of the target class for the attack, such as 'frog'. On CIFAR10, Tiny-ImageNet, and TSRD, with a mere 0.1\%, 0.025\%, and 0.4\% poisoning rate of the training set size, respectively, Poison Dart Frog achieves a high Attack Success Rate compared to LC, HTBA, BadNets, and Blend. Furthermore, compared to the state-of-the-art attack, NARCISSUS, Poison Dart Frog achieves similar attack success rates without any training data. Finally, we demonstrate that four typical backdoor defense algorithms struggle to counter Poison Dart Frog.


翻译:暂无翻译

0
下载
关闭预览

相关内容

Google 发布的面向结构化 web 应用的开语言。 dartlang.org
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员