The Chinese character riddle is a unique form of cultural entertainment specific to the Chinese language. It typically comprises two parts: the riddle description and the solution. The solution to the riddle is a single character, while the riddle description primarily describes the glyph of the solution, occasionally supplemented with its explanation and pronunciation. Solving Chinese character riddles is a challenging task that demands understanding of character glyph, general knowledge, and a grasp of figurative language. In this paper, we construct a \textbf{C}hinese \textbf{C}haracter riddle dataset named CC-Riddle, which covers the majority of common simplified Chinese characters. The construction process is a combination of web crawling, language model generation and manual filtering. In generation stage, we input the Chinese phonetic alphabet, glyph and meaning of the solution character into the generation model, which then produces multiple riddle descriptions. The generated riddles are then manually filtered and the final CC-Riddle dataset is composed of both human-written riddles and these filtered, generated riddles. In order to assess the performance of language models on the task of solving character riddles, we use retrieval-based, generative and multiple-choice QA strategies to test three language models: BERT, ChatGPT and ChatGLM. The test results reveal that current language models still struggle to solve Chinese character riddles. CC-Riddle is publicly available at \url{https://github.com/pku0xff/CC-Riddle}.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员