Restricted Boltzmann Machines (RBMs) are powerful tools for modeling complex systems and extracting insights from data, but their training is hindered by the slow mixing of Markov Chain Monte Carlo (MCMC) processes, especially with highly structured datasets. In this study, we build on recent theoretical advances in RBM training and focus on the stepwise encoding of data patterns into singular vectors of the coupling matrix, significantly reducing the cost of generating new samples and evaluating the quality of the model, as well as the training cost in highly clustered datasets. The learning process is analogous to the thermodynamic continuous phase transitions observed in ferromagnetic models, where new modes in the probability measure emerge in a continuous manner. We leverage the continuous transitions in the training process to define a smooth annealing trajectory that enables reliable and computationally efficient log-likelihood estimates. This approach enables online assessment during training and introduces a novel sampling strategy called Parallel Trajectory Tempering (PTT) that outperforms previously optimized MCMC methods. To mitigate the critical slowdown effect in the early stages of training, we propose a pre-training phase. In this phase, the principal components are encoded into a low-rank RBM through a convex optimization process, facilitating efficient static Monte Carlo sampling and accurate computation of the partition function. Our results demonstrate that this pre-training strategy allows RBMs to efficiently handle highly structured datasets where conventional methods fail. Additionally, our log-likelihood estimation outperforms computationally intensive approaches in controlled scenarios, while the PTT algorithm significantly accelerates MCMC processes compared to conventional methods.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关VIP内容
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员