The transition of cellular networks to (i) software-based systems on commodity hardware and (ii) platforms for services beyond connectivity introduces critical system-level challenges. As sensing emerges as a key feature toward 6G standardization, supporting Integrated Sensing and Communication (ISAC) with limited bandwidth and piggybacking on communication signals, while maintaining high reliability and performance, remains a fundamental challenge. In this paper, we provide two key contributions. First, we present a programmable, plug-and-play framework for processing PHY/MAC signals through real-time, GPU-accelerated Artificial Intelligence (AI) applications on the edge Radio Access Network (RAN) infrastructure. Building on the Open RAN dApp architecture, the framework interfaces with a GPU-accelerated gNB based on NVIDIA ARC-OTA, feeding PHY/MAC data to custom AI logic with latency under 0.5 ms for complex channel state information extraction. Second, we demonstrate the framework's capabilities through cuSense, an indoor localization dApp that consumes uplink DMRS channel estimates, removes static multipath components, and runs a neural network to infer the position of a moving person. Evaluated on a 3GPP-compliant 5G NR deployment, cuSense achieves a mean localization error of 77 cm, with 75% of predictions falling within 1 meter. This is without dedicated sensing hardware or modifications to the RAN stack or signals. We plan to release both the framework and cuSense pipelines as open source, providing a reference design for future AI-native RANs and ISAC applications.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员