We consider a generalization of the Laplace transform of Poisson shot noise defined as an integral transform with respect to a matrix exponential. We denote this integral transform as the {\em matrix Laplace transform} given its similarity to the Laplace-Stieltjes transform. We establish that the matrix Laplace transform is in general a natural matrix function extension of the typical scalar Laplace transform, and that the matrix Laplace transform of Poisson shot noise admits an expression that is analogous to the expression implied by Campbell's theorem for the Laplace functional of a Poisson point process. We demonstrate the utility of our generalization of Campbell's theorem in two important applications: the characterization of a Poisson shot noise process and the derivation of the complementary cumulative distribution function (CCDF) of signal to interference and noise (SINR) models with phase-type distributed fading powers. In the former application, we demonstrate how the higher order moments of a linear combination of samples of a Poisson shot noise process may be obtained directly from the elements of its matrix Laplace transform. We further show how arbitrarily tight approximations and bounds on the CCDF of this object may be obtained from the summation of the first row of its matrix Laplace transform. For the latter application, we show how the CCDF of SINR models with phase-type distributed fading powers may be obtained in terms of an expectation of the matrix Laplace transform of the interference and noise, analogous to the canonical case of SINR models with Rayleigh fading.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
43+阅读 · 2024年1月25日
Arxiv
30+阅读 · 2021年8月18日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员