Predictive modeling has the potential to enhance human decision-making. However, many predictive models fail in practice due to problematic problem formulation in cases where the prediction target is an abstract concept or construct and practitioners need to define an appropriate target variable as a proxy to operationalize the construct of interest. The choice of an appropriate proxy target variable is rarely self-evident in practice, requiring both domain knowledge and iterative data modeling. This process is inherently collaborative, involving both domain experts and data scientists. In this work, we explore how human-machine teaming can support this process by accelerating iterations while preserving human judgment. We study the impact of two human-machine teaming strategies on proxy construction: 1) relevance-first: humans leading the process by selecting relevant proxies, and 2) performance-first: machines leading the process by recommending proxies based on predictive performance. Based on a controlled user study of a proxy construction task (N = 20), we show that the performance-first strategy facilitated faster iterations and decision-making, but also biased users towards well-performing proxies that are misaligned with the application goal. Our study highlights the opportunities and risks of human-machine teaming in operationalizing machine learning target variables, yielding insights for future research to explore the opportunities and mitigate the risks.
 翻译:暂无翻译