Smart contracts are software programs that enable diverse business activities on the blockchain. Recent research has identified new classes of "machine un-auditable" bugs that arise from both transactional contexts and source code. Existing detection methods require human understanding of underlying transaction logic and manual reasoning across different sources of context (i.e. modalities), such as code, dynamic transaction executions, and natural language specifying the expected transaction behavior. To automate the detection of ``machine un-auditable'' bugs, we present SmartInv, an accurate and fast smart contract invariant inference framework. Our key insight is that the expected behavior of smart contracts, as specified by invariants, relies on understanding and reasoning across multimodal information, such as source code and natural language. We propose a new prompting strategy to foundation models, Tier of Thought (ToT), to reason across multiple modalities of smart contracts and ultimately to generate invariants. By checking the violation of these generated invariants, SmartInv can identify potential vulnerabilities. We evaluate SmartInv on real-world contracts and re-discover bugs that resulted in multi-million dollar losses over the past 2.5 years (from January 1, 2021 to May 31, 2023). Our extensive evaluation shows that SmartInv generates (3.5X) more bug-critical invariants and detects (4$\times$) more critical bugs compared to the state-of-the-art tools in significantly (150X) less time. \sys uncovers 119 zero-day vulnerabilities from the 89,621 real-world contracts. Among them, five are critical zero-day bugs confirmed by developers as ``high severity.''


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
17+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
35+阅读 · 2021年1月27日
Arxiv
25+阅读 · 2018年1月24日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
17+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员