Trusted Execution Environments (TEEs) embedded in IoT devices provide a deployable solution to secure IoT applications at the hardware level. By design, in TEEs, the Trusted Operating System (Trusted OS) is the primary component. It enables the TEE to use security-based design techniques, such as data encryption and identity authentication. Once a Trusted OS has been exploited, the TEE can no longer ensure security. However, Trusted OSes for IoT devices have received little security analysis, which is challenging from several perspectives: (1) Trusted OSes are closed-source and have an unfavorable environment for sending test cases and collecting feedback. (2) Trusted OSes have complex data structures and require a stateful workflow, which limits existing vulnerability detection tools. To address the challenges, we present SyzTrust, the first state-aware fuzzing framework for vetting the security of resource-limited Trusted OSes. SyzTrust adopts a hardware-assisted framework to enable fuzzing Trusted OSes directly on IoT devices as well as tracking state and code coverage non-invasively. SyzTrust utilizes composite feedback to guide the fuzzer to effectively explore more states as well as to increase the code coverage. We evaluate SyzTrust on Trusted OSes from three major vendors: Samsung, Tsinglink Cloud, and Ali Cloud. These systems run on Cortex M23/33 MCUs, which provide the necessary abstraction for embedded TEEs. We discovered 70 previously unknown vulnerabilities in their Trusted OSes, receiving 10 new CVEs so far. Furthermore, compared to the baseline, SyzTrust has demonstrated significant improvements, including 66% higher code coverage, 651% higher state coverage, and 31% improved vulnerability-finding capability. We report all discovered new vulnerabilities to vendors and open source SyzTrust.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员