Classical optimisation theory guarantees monotonic objective decrease for gradient descent (GD) when employed in a small step size, or ``stable", regime. In contrast, gradient descent on neural networks is frequently performed in a large step size regime called the ``edge of stability", in which the objective decreases non-monotonically with an observed implicit bias towards flat minima. In this paper, we take a step toward quantifying this phenomenon by providing convergence rates for gradient descent with large learning rates in an overparametrised least squares setting. The key insight behind our analysis is that, as a consequence of overparametrisation, the set of global minimisers forms a Riemannian manifold $M$, which enables the decomposition of the GD dynamics into components parallel and orthogonal to $M$. The parallel component corresponds to Riemannian gradient descent on the objective sharpness, while the orthogonal component is a bifurcating dynamical system. This insight allows us to derive convergence rates in three regimes characterised by the learning rate size: (a) the subcritical regime, in which transient instability is overcome in finite time before linear convergence to a suboptimally flat global minimum; (b) the critical regime, in which instability persists for all time with a power-law convergence toward the optimally flat global minimum; and (c) the supercritical regime, in which instability persists for all time with linear convergence to an orbit of period two centred on the optimally flat global minimum.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
43+阅读 · 2024年1月25日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员