Future vehicles are expected to dynamically deploy in-vehicle applications within a Service-Oriented Architecture (SOA) while critical services continue to operate under hard real-time constraints. Time-Sensitive Networking (TSN) on the in-vehicle Ethernet layer is dedicated to ensure deterministic communication between critical services; its Credit-Based Shaper (CBS) supports dynamic resource reservations. However, the dynamic nature of service deployment challenges network resource configuration, since any new reservation may change the latency of already validated flows. Standard methods of worst-case latency analysis for CBS have been found incorrect, and current TSN stream reservation procedures lack mechanisms to signal application layer Quality-of-Service (QoS) requirements or verify deadlines. In this paper, we propose and validate a QoS negotiation scheme that interacts with the TSN network controller to reserve resources while ensuring latency bounds. For the first time, this work comparatively evaluates reservation schemes using worst-case analysis and simulations of a realistic In-Vehicle Network (IVN) and demonstrates their impact on QoS guarantees, resource utilization, and setup times. We find that only one reservation scheme utilizing per-queue delay budgets and network calculus provides valid configurations and guarantees acceptable latency bounds throughout the IVN. The proposed service negotiation mechanism efficiently establishes 450 vehicular network reservations in just 11ms.


翻译:未来车辆预计将在面向服务的架构(SOA)中动态部署车内应用,同时关键服务仍需在硬实时约束下运行。车载以太网层的时间敏感网络(TSN)致力于确保关键服务间的确定性通信;其基于信用的整形器(CBS)支持动态资源预留。然而,服务部署的动态特性对网络资源配置提出了挑战,因为任何新的预留都可能改变已验证流量的时延。现有针对CBS的最坏情况时延分析方法已被证明存在缺陷,且当前TSN流预留流程缺乏传递应用层服务质量(QoS)需求或验证截止时间的机制。本文提出并验证了一种与TSN网络控制器交互的QoS协商方案,可在预留资源的同时确保时延边界。本研究首次通过最坏情况分析和真实车载网络(IVN)仿真对预留方案进行对比评估,揭示了其对QoS保障、资源利用率和建立时间的影响。研究发现,仅有一种采用每队列时延预算与网络演算的预留方案能提供有效配置,并保证整个IVN中可接受的时延边界。所提出的服务协商机制可在11毫秒内高效建立450个车载网络预留。

0
下载
关闭预览

相关内容

专知会员服务
15+阅读 · 2021年7月21日
专知会员服务
64+阅读 · 2021年6月11日
专知会员服务
42+阅读 · 2021年1月18日
时空数据挖掘:综述
专知
34+阅读 · 2022年6月30日
自动驾驶汽车技术路线简介
智能交通技术
15+阅读 · 2019年4月25日
无人机集群、蜂群与蜂群算法
无人机
94+阅读 · 2018年9月25日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
4+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
VIP会员
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
4+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员