Multimedia recommendation has received much attention in recent years. It models user preferences based on both behavior information and item multimodal information. Though current GCN-based methods achieve notable success, they suffer from two limitations: (1) Modality noise contamination to the item representations. Existing methods often mix modality features and behavior features in a single view (e.g., user-item view) for propagation, the noise in the modality features may be amplified and coupled with behavior features. In the end, it leads to poor feature discriminability; (2) Incomplete user preference modeling caused by equal treatment of modality features. Users often exhibit distinct modality preferences when purchasing different items. Equally fusing each modality feature ignores the relative importance among different modalities, leading to the suboptimal user preference modeling. To tackle the above issues, we propose a novel Multi-View Graph Convolutional Network for the multimedia recommendation. Specifically, to avoid modality noise contamination, the modality features are first purified with the aid of item behavior information. Then, the purified modality features of items and behavior features are enriched in separate views, including the user-item view and the item-item view. In this way, the distinguishability of features is enhanced. Meanwhile, a behavior-aware fuser is designed to comprehensively model user preferences by adaptively learning the relative importance of different modality features. Furthermore, we equip the fuser with a self-supervised auxiliary task. This task is expected to maximize the mutual information between the fused multimodal features and behavior features, so as to capture complementary and supplementary preference information simultaneously. Extensive experiments on three public datasets demonstrate the effectiveness of our methods.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员