This work addresses the problem of efficient sampling of Markov random fields (MRF). The sampling of Potts or Ising MRF is most often based on Gibbs sampling, and is thus computationally expensive. We consider in this work how to circumvent this bottleneck through a link with Gaussian Markov Random fields. The latter can be sampled in several cost-effective ways, and we introduce a mapping from real-valued GMRF to discrete-valued MRF. The resulting new class of MRF benefits from a few theoretical properties that validate the new model. Numerical results show the drastic performance gain in terms of computational efficiency, as we sample at least 35x faster than Gibbs sampling using at least 37x less energy, all the while exhibiting empirical properties close to classical MRFs.


翻译:本研究致力于解决马尔可夫随机场(MRF)的高效采样问题。Potts或Ising MRF的采样通常基于吉布斯采样,计算成本高昂。本文探讨如何通过建立与高斯马尔可夫随机场(GMRF)的关联来规避这一瓶颈。后者可通过多种经济高效的方式进行采样,我们提出了一种从实值GMRF到离散值MRF的映射方法。由此产生的新型MRF类别具有若干理论特性,验证了新模型的有效性。数值结果表明,在计算效率方面实现了显著提升:与吉布斯采样相比,采样速度至少提升35倍,能耗至少降低37倍,同时保持与经典MRF相近的经验特性。

0
下载
关闭预览

相关内容

马尔可夫随机场(Markov Random Field),也有人翻译为马尔科夫随机场,马尔可夫随机场是建立在马尔可夫模型和贝叶斯理论基础之上的,它包含两层意思:一是什么是马尔可夫,二是什么是随机场。
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
From Softmax to Sparsemax-ICML16(1)
KingsGarden
74+阅读 · 2016年11月26日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
0+阅读 · 11月26日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
From Softmax to Sparsemax-ICML16(1)
KingsGarden
74+阅读 · 2016年11月26日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员