Privacy and security have rapidly emerged as first order design constraints. Users now demand more protection over who can see their data (confidentiality) as well as how it is used (control). Here, existing cryptographic techniques for security fall short: they secure data when stored or communicated but must decrypt it for computation. Fortunately, a new paradigm of computing exists, which we refer to as privacy-preserving computation (PPC). Emerging PPC technologies can be leveraged for secure outsourced computation or to enable two parties to compute without revealing either users' secret data. Despite their phenomenal potential to revolutionize user protection in the digital age, the realization has been limited due to exorbitant computational, communication, and storage overheads. This paper reviews recent efforts on addressing various PPC overheads using private inference (PI) in neural network as a motivating application. First, the problem and various technologies, including homomorphic encryption (HE), secret sharing (SS), garbled circuits (GCs), and oblivious transfer (OT), are introduced. Next, a characterization of their overheads when used to implement PI is covered. The characterization motivates the need for both GCs and HE accelerators. Then two solutions are presented: HAAC for accelerating GCs and RPU for accelerating HE. To conclude, results and effects are shown with a discussion on what future work is needed to overcome the remaining overheads of PI.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2023年8月31日
Arxiv
23+阅读 · 2021年12月19日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关论文
Arxiv
0+阅读 · 2023年8月31日
Arxiv
23+阅读 · 2021年12月19日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员