The maximum clique problem (MCP) is a fundamental problem in graph theory and in computational complexity. Given a graph G, the problem is that of finding the largest clique (complete subgraph) in G. The MCP has many important applications in different domains and has been much studied. The problem has been shown to be NP-Hard and the corresponding decision problem to be NP-Complete. All exact (optimal) algorithms discovered so far run in exponential time. Various meta-heuristics have been used to approximate the MCP. These include genetic and memetic algorithms, ant colony optimization, greedy algorithms, Tabu algorithms, and simulated annealing. This study presents a critical examination of the effectiveness of applying genetic algorithms (GAs) to the MCP compared to a purely stochastic approach. Our results indicate that Monte Carlo algorithms, which employ random searches to generate and then refine sub-graphs into cliques, often surpass genetic algorithms in both speed and capability, particularly in less dense graphs. This observation challenges the conventional reliance on genetic algorithms, suggesting a reevaluation of the roles of the crossover and mutation operators in exploring the solution space. We observe that, in some of the denser graphs, the recombination strategy of genetic algorithms shows unexpected efficacy, hinting at the untapped potential of genetic methods under specific conditions. This work not only questions established paradigms but also opens avenues for exploring algorithmic efficiency in solving the MCP and other NP-Hard problems, inviting further research into the conditions that favor purely stochastic methods over genetic recombination and vice versa.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2024年11月4日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员