This work introduces a compact framework for analyzing asynchronous entanglement distribution protocols under realistic error models. We focus on two contemporary protocols: sequential, where entanglement is established one node at a time, and parallel, where all nodes attempt to generate entanglement simultaneously. We derive an analytical expression for the fidelity of distributed entangled states, showing that the fidelity depends only on the total time all qubits spend in memory, rather than the individual memory times for each qubit. This result distills the complex dynamics of entanglement distribution into a compact accessible form, providing an scalable tool for evaluating protocol efficiency. Using this lightweight framework, we analyze the performance of parallel and sequential protocols, demonstrating that parallel distribution consistently outperforms sequential and highlighting the potential of parallel protocols for practical quantum network implementations.
翻译:本研究提出了一种紧凑框架,用于分析现实误差模型下的异步纠缠分布协议。我们聚焦于两种现代协议:顺序协议(逐个节点建立纠缠)和并行协议(所有节点同时尝试生成纠缠)。我们推导了分布式纠缠态保真度的解析表达式,表明保真度仅取决于所有量子比特在存储器中的总时间,而非每个量子比特的单独存储时间。该结果将纠缠分布的复杂动力学提炼为紧凑易用的形式,为评估协议效率提供了可扩展的工具。利用这一轻量级框架,我们分析了并行与顺序协议的性能,证明并行分布始终优于顺序分布,并突显了并行协议在实际量子网络部署中的潜力。