Despite the impressive generative abilities of black-box large language models (LLMs), their inherent opacity hinders further advancements in capabilities such as reasoning, planning, and personalization. Existing works aim to enhance LLM capabilities via domain-specific adaptation, which require additional training on accessible model parameters, an infeasible option for black-box LLMs. To address this challenge, we introduce Matryoshka Pilot (M-Pilot), a lightweight white-box LLM controller that guides a large-scale black-box LLM generator by decomposing complex tasks into a series of intermediate outputs. Specifically, we consider the black-box LLM as an environment, with M-Pilot serving as a policy to provide intermediate guidance through prompts for driving the black-box LLM. M-Pilot is trained to pivot the outputs of the black-box LLM aligning with preferences during iterative interaction, which enables controllable multi-turn generation and self-improvement in optimizing intermediate guidance. Empirical evaluations on diverse tasks demonstrate that our method effectively enhances the capabilities of black-box LLMs in complex, long-horizon tasks. Our code is publicly available at: https://github.com/lichangh20/Matryoshka.


翻译:尽管黑盒大语言模型(LLMs)展现出卓越的生成能力,但其固有的不透明性阻碍了在推理、规划与个性化等能力上的进一步发展。现有研究多通过领域特定适配来增强LLM能力,这需要对可访问的模型参数进行额外训练,而这对黑盒LLM并不可行。为应对这一挑战,我们提出套娃引导器(M-Pilot),一种轻量级白盒LLM控制器,通过将复杂任务分解为一系列中间输出来指导大规模黑盒LLM生成器。具体而言,我们将黑盒LLM视为环境,M-Pilot则作为策略,通过提示提供中间指导以驱动黑盒LLM。M-Pilot经过训练,可在迭代交互过程中调整黑盒LLM的输出以符合偏好,从而实现可控的多轮生成及优化中间指导的自我改进。在多样化任务上的实证评估表明,我们的方法能有效提升黑盒LLM在复杂长程任务中的能力。代码已公开于:https://github.com/lichangh20/Matryoshka。

0
下载
关闭预览

相关内容

在科学,计算和工程学中,黑盒是一种设备,系统或对象,可以根据其输入和输出(或传输特性)对其进行查看,而无需对其内部工作有任何了解。 它的实现是“不透明的”(黑色)。 几乎任何事物都可以被称为黑盒:晶体管,引擎,算法,人脑,机构或政府。为了使用典型的“黑匣子方法”来分析建模为开放系统的事物,仅考虑刺激/响应的行为,以推断(未知)盒子。 该黑匣子系统的通常表示形式是在该方框中居中的数据流程图。黑盒的对立面是一个内部组件或逻辑可用于检查的系统,通常将其称为白盒(有时也称为“透明盒”或“玻璃盒”)。
【NeurIPS2023】跨情境课程设计的Transformer智能体
专知会员服务
27+阅读 · 2023年10月14日
【AAAI2021】“可瘦身”的生成式对抗网络
专知会员服务
13+阅读 · 2020年12月12日
【NeurIPS2019】图变换网络:Graph Transformer Network
Single-Shot Object Detection with Enriched Semantics
统计学习与视觉计算组
14+阅读 · 2018年8月29日
CosFace: Large Margin Cosine Loss for Deep Face Recognition论文笔记
统计学习与视觉计算组
44+阅读 · 2018年4月25日
读论文Discriminative Deep Metric Learning for Face and KV
统计学习与视觉计算组
12+阅读 · 2018年4月6日
国家自然科学基金
4+阅读 · 2015年12月31日
国家自然科学基金
9+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关VIP内容
【NeurIPS2023】跨情境课程设计的Transformer智能体
专知会员服务
27+阅读 · 2023年10月14日
【AAAI2021】“可瘦身”的生成式对抗网络
专知会员服务
13+阅读 · 2020年12月12日
相关资讯
【NeurIPS2019】图变换网络:Graph Transformer Network
Single-Shot Object Detection with Enriched Semantics
统计学习与视觉计算组
14+阅读 · 2018年8月29日
CosFace: Large Margin Cosine Loss for Deep Face Recognition论文笔记
统计学习与视觉计算组
44+阅读 · 2018年4月25日
读论文Discriminative Deep Metric Learning for Face and KV
统计学习与视觉计算组
12+阅读 · 2018年4月6日
相关基金
国家自然科学基金
4+阅读 · 2015年12月31日
国家自然科学基金
9+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员