Recent research endeavors have shown that combining neural radiance fields (NeRFs) with pre-trained diffusion models holds great potential for text-to-3D generation. However, a hurdle is that they often encounter guidance collapse when rendering multi-object scenes with relatively long sentences. Specifically, text-to-image diffusion models are inherently unconstrained, making them less competent to accurately associate object semantics with 3D structures. To address it, we propose a novel framework, dubbed CompoNeRF, to explicitly incorporates an editable 3D scene layout to provide effective guidance at the object (i.e., local) and scene (i.e., global) levels. Firstly, we interpret the multi-object text as an editable 3D scene layout containing multiple local NeRFs associated with the object-specific 3D boxes and text prompt. Then, we introduce a composition module to calibrate the latent features from local NeRFs, which surprisingly improves the view consistency across different local NeRFs. Lastly, we apply text guidance on global and local levels through their corresponding views to avoid guidance ambiguity. Additionally, NeRFs can be decomposed and cached for composing other scenes with fine-tuning. This way, our CompoNeRF allows for flexible scene editing and re-composition of trained local NeRFs into a new scene by manipulating the 3D layout or text prompt. Leveraging the open-source Stable Diffusion model, our CompoNeRF can generate faithful and editable text-to-3D results while opening a potential direction for text-guided multi-object composition via the editable 3D scene layout. Notably, our CompoNeRF can achieve at most 54% performance gain based on the CLIP score metric. Code is available at https://.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员