The training paradigm of DETRs is heavily contingent upon pre-training their backbone on the ImageNet dataset. However, the limited supervisory signals provided by the image classification task and one-to-one matching strategy result in an inadequately pre-trained neck for DETRs. Additionally, the instability of matching in the early stages of training engenders inconsistencies in the optimization objectives of DETRs. To address these issues, we have devised an innovative training methodology termed step-by-step training. Specifically, in the first stage of training, we employ a classic detector, pre-trained with a one-to-many matching strategy, to initialize the backbone and neck of the end-to-end detector. In the second stage of training, we froze the backbone and neck of the end-to-end detector, necessitating the training of the decoder from scratch. Through the application of step-by-step training, we have introduced the first real-time end-to-end object detection model that utilizes a purely convolutional structure encoder, DETR with YOLO (DEYO). Without reliance on any supplementary training data, DEYO surpasses all existing real-time object detectors in both speed and accuracy. Moreover, the comprehensive DEYO series can complete its second-phase training on the COCO dataset using a single 8GB RTX 4060 GPU, significantly reducing the training expenditure. Source code and pre-trained models are available at https://github.com/ouyanghaodong/DEYO.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员