Real-world data, for example in climate applications, often consists of spatially gridded time series data or data with comparable structure. While the underlying system is often believed to behave similar at different points in space and time, those variations that do exist are twofold relevant: They often encode important information in and of themselves. And they may negatively affect the stability / convergence and reliability\Slash{}validity of results of algorithms assuming stationarity or space-translation invariance. We study the information encoded in changes of the causal graph, with stability in mind. An analysis of this general task identifies two core challenges. We develop guiding principles to overcome these challenges, and provide a framework realizing these principles by modifying constraint-based causal discovery approaches on the level of independence testing. This leads to an extremely modular, easily extensible and widely applicable framework. It can leverage existing constraint-based causal discovery methods (demonstrated on IID-algorithms PC, PC-stable, FCI and time series algorithms PCMCI, PCMCI+, LPCMCI) with little to no modification. The built-in modularity allows to systematically understand and improve upon an entire array of subproblems. By design, it can be extended by leveraging insights from change-point-detection, clustering, independence-testing and other well-studied related problems. The division into more accessible sub-problems also simplifies the understanding of fundamental limitations, hyperparameters controlling trade-offs and the statistical interpretation of results. An open-source implementation will be available soon.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员