Modern AI acceleration faces a fundamental challenge: conventional assumptions about memory requirements, batching effectiveness, and latency-throughput tradeoffs are systemwide generalizations that ignore the heterogeneous computational patterns of individual neural network operators. However, going towards network-level customization and operator-level heterogeneity incur substantial Non-Recurring Engineering (NRE) costs. While chiplet-based approaches have been proposed to amortize NRE costs, reuse opportunities remain limited without carefully identifying which chiplets are truly necessary. This paper introduces Mozart, a chiplet ecosystem and accelerator codesign framework that systematically constructs low cost bespoke application-specific integrated circuits (BASICs). BASICs leverage operator-level disaggregation to explore chiplet and memory heterogeneity, tensor fusion, and tensor parallelism, with place-and-route validation ensuring physical implementability. The framework also enables constraint-aware system-level optimization across deployment contexts ranging from datacenter inference serving to edge computing in autonomous vehicles. The evaluation confirms that with just 8 strategically selected chiplets, Mozart-generated composite BASICs achieve 43.5%, 25.4%, 67.7%, and 78.8% reductions in energy, energy-cost product, energy-delay product (EDP), and energy-delay-cost product compared to traditional homogeneous accelerators. For datacenter LLM serving, Mozart achieves 15-19% energy reduction and 35-39% energy-cost improvement. In speculative decoding, Mozart delivers throughput improvements of 24.6-58.6% while reducing energy consumption by 38.6-45.6%. For autonomous vehicle perception, Mozart reduces energy-cost by 25.54% and energy by 10.53% under real-time constraints.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员