A cut-down de Bruijn sequence is a cyclic string of length $L$, where $1 \leq L \leq k^n$, such that every substring of length $n$ appears at most once. Etzion [Theor. Comp. Sci 44 (1986)] gives an algorithm to construct binary cut-down de Bruijn sequences that requires $o(n)$ simple $n$-bit operations per symbol generated. In this paper, we simplify the algorithm and improve the running time to $\mathcal{O}(n)$ time per symbol generated using $\mathcal{O}(n)$ space. We then provide the first successor-rule approach for constructing a binary cut-down de Bruijn sequence by leveraging recent ranking algorithms for fixed-density Lyndon words. Finally, we develop an algorithm to generate cut-down de Bruijn sequences for $k>2$ that runs in $\mathcal{O}(n)$ time per symbol using $\mathcal{O}(n)$ space after some initialization. While our $k$-ary algorithm is based on our simplified version of Etzion's binary algorithm, a number of non-trivial adaptations are required to generalize to larger alphabets.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2023年10月13日
Arxiv
0+阅读 · 2023年10月13日
Arxiv
0+阅读 · 2023年10月12日
Arxiv
0+阅读 · 2023年10月12日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关论文
Arxiv
0+阅读 · 2023年10月13日
Arxiv
0+阅读 · 2023年10月13日
Arxiv
0+阅读 · 2023年10月12日
Arxiv
0+阅读 · 2023年10月12日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员