We present substantially generalized and improved quantum algorithms over prior work for inhomogeneous linear and nonlinear ordinary differential equations (ODE). In Berry et al., (2017), a quantum algorithm for a certain class of linear ODEs is given, where the matrix involved needs to be diagonalizable. The quantum algorithm for linear ODEs presented here extends to many classes of non-diagonalizable matrices. The algorithm here can also be exponentially faster for certain classes of diagonalizable matrices. Our linear ODE algorithm is then applied to nonlinear differential equations using Carleman linearization (an approach taken recently by us in Liu et al., (2021)). The improvement over that result is two-fold. First, we obtain an exponentially better dependence on error. This kind of logarithmic dependence on error has also been achieved by Xue et al., (2021), but only for homogeneous nonlinear equations. Second, the present algorithm can handle any sparse, invertible matrix (that models dissipation) if it has a negative log-norm (including non-diagonalizable matrices), whereas Liu et al., (2021) and Xue et al., (2021) additionally require normality.


翻译:在Berry 等人(2017年) 中,给出了某类线性分子数的量子算法,其中所涉及的矩阵需要对等。此处提出的线性分子数的量子算法扩大到许多非对等化矩阵类别。这里的算法对于某些可分解的矩阵类别也可以快速增长。然后,我们的线性ODE算法应用到非线性差异方程式(我们最近在刘等人(2021年)中采用的一种方法) 。这一结果的改进是双重的。首先,我们对错误的依赖性极大提高。这种对误的对数依赖性也由薛等人(2021年)实现,但只针对同质的非线性方程方程。第二,目前的算法可以处理任何稀疏、不可逆的矩阵(如果模型分解),如果它具有负式的日志(包括非对等式矩阵),那么Liuxi et al. (2021年) 和 Liscial. al. (2021年) 和Liel. al. (2021年) 。

0
下载
关闭预览

相关内容

专知会员服务
86+阅读 · 2020年12月5日
专知会员服务
124+阅读 · 2020年9月8日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
强化学习三篇论文 避免遗忘等
CreateAMind
20+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
24+阅读 · 2022年2月4日
VIP会员
相关VIP内容
专知会员服务
86+阅读 · 2020年12月5日
专知会员服务
124+阅读 · 2020年9月8日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
强化学习三篇论文 避免遗忘等
CreateAMind
20+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员