We consider a contextual online learning (multi-armed bandit) problem with high-dimensional covariate $\mathbf{x}$ and decision $\mathbf{y}$. The reward function to learn, $f(\mathbf{x},\mathbf{y})$, does not have a particular parametric form. The literature has shown that the optimal regret is $\tilde{O}(T^{(d_x+d_y+1)/(d_x+d_y+2)})$, where $d_x$ and $d_y$ are the dimensions of $\mathbf x$ and $\mathbf y$, and thus it suffers from the curse of dimensionality. In many applications, only a small subset of variables in the covariate affect the value of $f$, which is referred to as \textit{sparsity} in statistics. To take advantage of the sparsity structure of the covariate, we propose a variable selection algorithm called \textit{BV-LASSO}, which incorporates novel ideas such as binning and voting to apply LASSO to nonparametric settings. Our algorithm achieves the regret $\tilde{O}(T^{(d_x^*+d_y+1)/(d_x^*+d_y+2)})$, where $d_x^*$ is the effective covariate dimension. The regret matches the optimal regret when the covariate is $d^*_x$-dimensional and thus cannot be improved. Our algorithm may serve as a general recipe to achieve dimension reduction via variable selection in nonparametric settings.


翻译:我们考虑到一个背景在线学习(多武装土匪)问题, 问题在于高维的 Covariate $\ mathbf{x} 美元和决定 $\ mathbf{y} 美元。 学习的奖赏函数, $f( mathbf{x},\ mathbf{y} 美元, 没有特定的参数格式。 文献显示, 最佳遗憾是 $\\\\ (d_ x+d_y+1) / (d_ x+_d_y+2} 美元 美元, 其中$_ xxx 美元和美元是 mathbf{x} 的维度。 学习的奖赏函数, $(mathbbbffff{x}, xxxx) 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 等

0
下载
关闭预览

相关内容

不可错过!700+ppt《因果推理》课程!杜克大学Fan Li教程
专知会员服务
72+阅读 · 2022年7月11日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
VIP会员
相关VIP内容
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员