Rotatable antenna (RA) technology has recently drawn significant attention in wireless systems owing to its unique ability to exploit additional spatial degrees-of-freedom (DoFs) by dynamically adjusting the three-dimensional (3D) boresight direction of each antenna. In this letter, we propose a new RA-assisted cognitive radio (CR) system designed to achieve efficient spectrum sharing while mitigating interference between primary and secondary communication links. Specifically, we formulate an optimization problem for the joint design of the transmit beamforming and the boresight directions of RAs at the secondary transmitter (ST), aimed at maximizing the received signal-to-interference-plus-noise ratio (SINR) at the secondary receiver (SR), while satisfying both interference constraint at the primary receiver (PR) and the maximum transmit power constraint at the ST. Although the formulated problem is challenging to solve due to its non-convexity and coupled variables, we develop an efficient algorithm by leveraging alternating optimization (AO) and successive convex approximation (SCA) techniques to acquire high-quality solutions. Numerical results demonstrate that the proposed RA-assisted system substantially outperforms conventional benchmark schemes in spectrum-sharing CR systems, validating RA's capability to simultaneously enhance the communication quality at the SR and mitigate interference at the PR.
翻译:暂无翻译