Propagation rules are of great help in constructing good linear codes. Both Euclidean and Hermitian hulls of linear codes perform an important part in coding theory. In this paper, we consider these two aspects together and determine the dimensions of Euclidean and Hermitian hulls of two classical propagation rules, namely, the direct sum construction and the $(\mathbf{u},\mathbf{u+v})$-construction. Some new criteria for resulting codes derived from these two propagation rules being self-dual, self-orthogonal or linear complement dual (LCD) codes are given. As applications, we construct some linear codes with prescribed hull dimensions and many new binary, ternary Euclidean formally self-dual (FSD) LCD codes, quaternary Hermitian FSD LCD codes and good quaternary Hermitian LCD codes which are optimal or have best or almost best known parameters according to Datebase at $http://www.codetables.de$. Moreover, our methods contributes positively to improve the lower bounds on the minimum distance of known LCD codes.


翻译:推广规则对构建良好的线性代码大有帮助。 Euclidean 和 Hermitian 的线性代码壳在编码理论中扮演重要角色。 在本文中,我们共同考虑这两个方面,并确定Euclidean 和 Hermitian 的两个古典传播规则,即直接总和构造和$(mathbf{u},\mathbf{u+v}) 美元构建。由这两个传播规则产生的新代码标准是自成一体的、自成一体或线性补充双重(LCD)代码。作为应用,我们制定了一些带有规定的船体尺寸的线性代码,以及许多新的二进制、永恒的Euclidean 正式的自成二进制(FSD)代码、四进制的Hermitian FSD LCD 代码以及良好的Kemtinary Hermitian LCD 代码,这些代码是最佳的,或者根据日期数据库在 $/www.codebtables.de$。 此外,我们的方法有助于改善已知最低距离的LCD代码。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
82+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
54+阅读 · 2022年1月1日
VIP会员
相关VIP内容
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员