In theatre, playwrights use the portrayal of characters to explore culturally based gender norms. In this paper, we develop quantitative methods to study gender depiction in the non-religious works (comedias) of Pedro Calderón de la Barca, a prolific Spanish 17th century author. We gather insights from a corpus of more than 100 plays by using a gender classifier and applying model explainability (attribution) methods to determine which text features are most influential in the model's decision to classify speech as 'male' or 'female', indicating the most gendered elements of dialogue in Calderón's comedias in a human accessible manner. We find that female and male characters are portrayed differently and can be identified by the gender prediction model at practically useful accuracies (up to f=0.83). Analysis reveals semantic aspects of gender portrayal, and demonstrates that the model is even useful in providing a relatively accurate scene-by-scene prediction of cross-dressing characters.


翻译:在戏剧中,剧作家通过角色塑造来探索基于文化的性别规范。本文开发了定量方法,以研究17世纪西班牙多产作家佩德罗·卡尔德隆·德·拉·巴尔卡非宗教作品(喜剧)中的性别描绘。我们通过使用性别分类器并应用模型可解释性(归因)方法,从一个包含100多部戏剧的语料库中收集见解,以确定哪些文本特征对模型将台词分类为‘男性’或‘女性’的决策最具影响力,从而以人类可理解的方式揭示卡尔德隆喜剧中对白中最具性别特征的元素。研究发现,女性与男性角色的描绘方式存在差异,且可通过性别预测模型以实际有效的准确率(最高f=0.83)进行识别。分析揭示了性别描绘的语义层面,并证明该模型甚至可用于对跨性别角色提供相对准确的逐场景预测。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
0+阅读 · 11月17日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员